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1 Introduction

The development of the theory of time scales was
initiated by Hilger [1]. A time scale is an arbi-
trary nonempty closed subset of the real num-
bers. Many integral inequalities on time scales
have been established since then, for example [2-
12], which have been designed in order to uni-
fy continuous and discrete analysis. But to our
knowledge, delay integral inequalities on time s-
cales have been scarcely payed attention to in the
literature so far.

Our aim in this paper is to establish some
new delay integral inequalities on time scales, and
present some applications for them.

For two given sets G, H, we denote the set of
maps from G to H by (G,H), while denote the
definition domain and the image of a function f
by Dom(f) and Im(f) respectively.

In the rest of the paper, R denotes the set of
real numbers and R+ = [0,∞). Z denotes the set
of integers. T denotes an arbitrary time scale and
T0 = [t0,∞)

∩
T, where t0 ∈ T. The set Tκ is

defined to be T if T does not have a left-scattered
maximum, otherwise it is T without the left-
scattered maximum. On T we define the forward
and backward jump operators σ(t) ∈ (T,T) and
ρ(t) ∈ (T,T) such that σ(t) = inf{s ∈ T, s > t},
ρ(t) = sup{s ∈ T, s < t}.

Definition 1 The grainless µ ∈ (T,R+) is de-
fined by µ(t) = σ(t)− t.

Remark 2 Obviously, µ(t) = 0 if T = R while
µ(t) = 1 if T = Z.

Definition 3 A point t ∈ T with t > infT is
said to be left-dense if ρ(t) = t and right-dense
if σ(t) = t, left-scattered if ρ(t) < t and right-
scattered if σ(t) > t.

Definition 4 The set Tκ is defined to be T if T
does not have a left-scattered maximum, otherwise
it is T without the left-scattered maximum.

Definition 5 A function f ∈ (T,R) is called
rd-continuous if it is continuous in right-dense
points and if the left-sided limits exist in left-dense
points, while f is called regressive if 1+µ(t)f(t) ̸=
0. Crd denotes the set of rd-continuous func-
tions, while R denotes the set of all regressive
and rd-continuous functions, and R+ = {f |f ∈
R, 1 + µ(t)f(t) > 0, ∀t ∈ T}.

Definition 6 For some t ∈ Tκ, and a function
f ∈ (T,R), the delta derivative of f is denoted
by f∆(t), and satisfies

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|
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for ∀ε > 0, where s ∈ U, and U is a neighborhood
of t. The function f is called delta differential
on Tκ.

Remark 7 If T = R, then f∆(t) becomes the
usual derivative f ′(t), while f∆(t) = f(t+1)−f(t)
if T = Z, which represents the forward difference.

Definition 8 If F∆(t) = f(t), t ∈ Tκ, then
F is called an antiderivative of f , and the
Cauchy integral of f is defined by∫ b

a
f(t)∆t = F (b)− F (a),

where a, b ∈ Tκ.

The following two theorems include some
important properties for delta derivative and
Cauchy integral on time scales.

Theorem 9 [11, Theorem 1.1] If f, g ∈ (T, R),
and t ∈ Tκ, then

(i) f∆(t) =


f(σ(t))−f(t)

µ(t) if µ(t) ̸= 0,

lim
s→t

f(t)−f(s)
t−s if µ(t) = 0.

(ii) If f, g are delta differential at t, then
fg is also delta differential at t, and

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t).

Theorem 10 [11, Theorem 1.2] If a, b, c ∈
T, α ∈ R, and f, g ∈ Crd, then

(i)
∫ b
a [f(t) + g(t)]∆t =

∫ b
a f(t)∆t+

∫ b
a g(t)∆t,

(ii)
∫ b
a (αf)(t)∆t = α

∫ b
a f(t)∆t,

(iii)
∫ b
a f(t)∆t = −

∫ a
b f(t)∆t,

(iv)
∫ b
a f(t)∆t =

∫ c
a f(t)∆t+

∫ b
c f(t)∆t,

(v)
∫ a
a f(t)∆t = 0,

(vi) if f(t) ≥ 0 for all a ≤ t ≤ b, then∫ b
a f(t)∆t ≥ 0.

Remark 11 If b = ∞, then all conclusions of
Theorem 10 still hold.

Definition 12 The cylinder transformation ξh is
defined by

ξh(z) =

{
Log(1+hz)

h , if h ̸= 0 (for z ̸= − 1
h),

z, if h = 0,

where Log is the principal logarithm function.

Definition 13 For p ∈ R, the exponential func-
tion is defined by

ep(t, s) = exp(

∫ t

s
ξµ(τ)(p(τ))∆τ)

for s, t ∈ T.

Definition 14 If sup
t∈T

t = ∞, p ∈ R, we define

ep(∞, s) = exp(

∫ ∞

s
ξµ(τ)(p(τ))∆τ)

for t ∈ T.

Remark 15 If T = R, then for{
ep(t, s) = exp(

∫ t
s p(τ)dτ), for s, t ∈ R,

ep(∞, s) = exp(
∫∞
s p(τ)dτ), for s ∈ R.

If T = Z, then
ep(t, s) =

t−1∏
τ=s

[1 + p(τ)], for s, t ∈ Z and s < t,

ep(∞, s) =
∞∏
τ=s

[1 + p(τ)], for s ∈ Z.

The following two theorems include some
known properties on the exponentialfunction.

Theorem 16 [12, Theorem 5.2] If p ∈ R, then
the following conclusions hold

(i) ep(t, t) ≡ 1, and e0(t, s) ≡ 1,
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),
(iii) If p ∈ R+, then ep(t, s) > 0 for ∀s, t ∈

T,
(iv) If p ∈ R+, then ⊖p ∈ R+,
(v) ep(t, s) =

1
ep(s,t)

= e⊖p(s, t),

where ⊖p = − p
1+µp .

Remark 17 If s = ∞, then Theorem 16(iii)(v)
still hold.

Theorem 18 [12, Theorem 5.1] If p ∈ R, and
fix t0 ∈ T, then the exponentialfunction ep(t, t0)
is the unique solution of the following initial value
problem {

y∆(t) = p(t)y(t),
y(t0) = 1.

For more details about the calculus of time
scales, we advise to refer to [13].
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2 Main Results

The following Lemma is useful for proving our
results.

Lemma 19 ([13], Gronwall’s inequality) Sup-
pose u, a, b ∈ Crd, m ∈ R+, m ≥ 0. Then

u(t) ≤ a(t) + b(t)

∫ t

t0

m(s)u(s)∆s, t ∈ T0

implies

u(t) ≤ a(t)+b(t)

∫ t

t0

em̃(t, σ(s))a(s)m(s)∆s, t ∈ T0,

where m̃(t) = m(t)b(t), and em̃(t, t0) is the unique
solution of the following equation

y∆(t) = m̃(t)y(t), y(t0) = 1.

Lemma 20 Under the conditions of Lemma 19,
furthermore, if b(t) ≡ 1, and a(t) is nondecreasing
on T0, then

u(t) ≤ a(t)em(t, t0), t ∈ T0.

Proof: Since b(t) ≡ 1, and a(t) is nondecreasing
on T0, then m̃ = m, and

u(t) ≤ a(t) +

∫ t

t0

em(t, σ(s))a(s)m(s)∆s

≤ a(t)[1 +

∫ t

t0

em(t, σ(s))m(s)∆s].

From [13, Theorem 2.39 and 2.36 (i)], we have∫ t

t0

em(t, σ(s))m(s)∆s

= em(t, t0)− em(t, t) = em(t, t0)− 1,

Combining the above information we can obtain
the desired inequality. �

Lemma 21 [14] Assume that a ≥ 0, p ≥ q ≥ 0,
and p ̸= 0, then for any K > 0,

a
q
p ≤ q

p
K

q−p
p a+

p− q

p
K

q
p .

Firstly we will study the following Gronwall-
Bellman type delay integral inequality of the fol-
lowing form

up(t) ≤ a(t) + b(t)

∫ t

t0

[m(s) + f(s)up(τ1(s))

+g(s)uq(τ2(s)) +

∫ s

t0

h(ξ)ur(τ3(ξ))∆ξ]∆s, (1)

Theorem 22 Suppose u, f, g, h, m, a, b ∈
Crd(T0, R+) and a, b are nondecreasing, p, q, r
are constants, and p ≥ q ≥ 0, p ≥ r ≥ 0, p ̸=
0, τi ∈ (T0,T) with τi(t) ≤ t, i = 1, 2, 3, and
−∞ < α = inf{min{τi(t), i = 1, 2, 3}, t ∈ T0} ≤
t0. η ∈ Crd([α, t0]

∩
T, R+). If for t ∈ T0, u(t)

satisfies (1) with the initial condition{
u(t) = η(t), t ∈ [α, t0]

∩
T,

η(τi(t)) ≤ a
1
p (t), ∀t ∈ T0, τi(t) ≤ t0, i = 1, 2, 3,

(2)
then

u(t) ≤ {[a(t)+b(t)H2(t)eH3(t, t0)]H1(t)}
1
p , t ∈ T0,

(3)
where

H1(t) = 1 + b(t)
∫ t
t0
e
f̃
(t, σ(s))f(s)∆s,

f̃(t) = f(t)b(t),
(4)

H2(t) =

∫ t

t0

{m(s)+g(s)[
q

p
K

q−p
p a(s)+

p−q
p

K
q
p ]H1(s)

q
p∆s

+

∫ t

t0

∫ s

t0

h(ξ)[
r

p
K

r−p
p a(ξ)+

p−r
p
K

r
p ]H1(ξ)

r
p∆ξ}∆s,

∀K > 0, (5)

H3(t) = g(t)
q

p
K

q−p
p b(t)H1(t)

q
p+

∫ t

t0

h(ξ)
r

p
K

r−p
p b(ξ)

H1(ξ)
r
p∆ξ, ∀K > 0. (6)

Proof: Let the right side of (1) be v(t), then

u(t) ≤ v
1
p (t), t ∈ T0. (7)

For t ∈ T0, if τi(t) ≥ t0, then τi(t) ∈ T0, so from
(7), considering τi(t) ≤ t, we have

u(τi(t)) ≤ v
1
p (τi(t)) ≤ v

1
p (t). (8)

If τi(t) ≤ t0, from (2) we have

u(τi(t))) = η(τi(t)) ≤ a
1
p (t) ≤ v

1
p (t). (9)

So from (8) and (9) we always have

u(τi(t)) ≤ v
1
p (t), i = 1, 2 for ∀t ∈ T0. (10)

Furthermore

v(t) ≤ a(t) + b(t)

∫ t

t0

[m(s) + f(s)v(s) + g(s)v
q
p (s)
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+

∫ s

t0

h(ξ)v
r
p (ξ)∆ξ]∆s. (11)

Let

c(t) = a(t) + b(t)

∫ t

t0

[m(s) + g(s)v
q
p (s)

+

∫ s

t0

h(ξ)v
r
p (ξ)∆ξ]∆s, (12)

then we have

v(t) ≤ c(t) + b(t)

∫ t

t0

f(s)v(s)∆s, t ∈ T0. (13)

From Lemma 19, and considering c(t) is nonde-
creasing on T0, we can obtain

v(t) ≤ c(t) + b(t)

∫ t

t0

e
f̃
(t, σ(s))c(s)f(s)∆s

≤ c(t)[1 + b(t)

∫ t

t0

e
f̃
(t, σ(s))f(s)∆s] = c(t)H1(t),

t ∈ T0, (14)

where H1(t), f̃(t) are defined in (4).
Let

y(t) =

∫ t

t0

[m(s)+g(s)v
q
p (s)+

∫ s

t0

h(ξ)u
r
p (ξ)∆ξ]∆s,

(15)
then

c(t) = a(t) + b(t)y(t), (16)

From Lemma 21, for ∀K > 0 we have
(a(t) + b(t)y(t))

q
p

≤ q
pK

q−p
p (a(t) + b(t)y(t)) + p−q

p K
q
p ,

(a(t) + b(t)y(t))
r
p

≤ r
pK

r−p
p (a(t) + b(t)y(t)) + p−r

p K
r
p .

(17)

Combining (14), (15) (16), (17) we have

y(t) ≤
∫ t

t0

[m(s) + g(s)(c(s)H1(s))
q
p

+

∫ s

t0

h(ξ)(c(ξ)H1(ξ))
r
p∆ξ]∆s

≤
∫ t

t0

{m(s) + g(s)[(a(s) + b(s)y(s))H1(s)]
q
p

+

∫ s

t0

h(ξ)[(a(ξ) + b(ξ)y(ξ))H1(ξ)]
r
p∆ξ}∆s

≤
∫ t

t0

{m(s) + g(s)[
q

p
K

q−p
p (a(s) + b(s)y(s))

+
p− q

p
K

q
p ]H1(s)

q
p }∆s

+

∫ t

t0

∫ s

t0

h(ξ)[
r

p
K

r−p
p (a(ξ) + b(ξ)y(ξ))

+
p− r

p
K

r
p ]H1(ξ)

r
p∆ξ∆s

=

∫ t

t0

{m(s)+ g(s)[
q

p
K

q−p
p a(s)+

p− q

p
K

q
p ]H1(s)

q
p

+

∫ s

t0

h(ξ)[
r

p
K

r−p
p a(ξ) +

p− r

p
K

r
p ]H1(ξ)

r
p∆ξ}∆s

+

∫ t

t0

[g(s)
q

p
K

q−p
p b(s)H1(s)

q
p y(s)

+

∫ s

t0

h(ξ)
r

p
K

r−p
p b(ξ)H1(ξ)

r
p y(ξ)∆ξ]∆s

≤ H2(t) +

∫ t

t0

H3(s)y(s)∆s, (18)

where H2(t), H3(t) are defined in (5) and (6)
respectively.

Considering H2(t) is nondecreasing on T0,
then according to Lemma 20 we have

y(t) ≤ H2(t)eH3(t, t0), t ∈ T0. (19)

Combining (14), (16), (19), we have

v(t) ≤ [a(t) + b(t)H2(t)eH3(t, t0)]H1(t). (20)

From (7), (20) we can obtain the desired inequal-
ity (3). �

Remark 23 If we take p ≥ 1, q = 1, f(t) =
h(t) ≡ 0, then Theorem 22 reduces to [15, Theo-
rem 1]. and furthermore, if T = R, then Theorem
22 reduces to [16, Theorem 1], which is one case
of integral inequality for continuous function.

Remark 24 If we take p ≥ 1, q = 1, h(t) ≡
0, b(t) ≡ 1, τ1(t) = t, then according to [13,
Theorem 2.39 and 2.36 (i)] we have H1(t) =

1 +
∫ t
t0
ef (t, σ(s))f(s)∆s = ef (t, t0) , and The-

orem 22 coincides with [15, Theorem 4] exactly.
Furthermore if T = R, then Theorem 22 reduces
to [16, Theorem 2], which is another case of inte-
gral inequality for continuous function.
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Remark 25 In Remark 23 and 24, if we take
T = Z, then Theorem 22 reduces to the theorems
established in [17], which are two cases of discrete
inequalities.

Remark 26 If we take T = R, b(t) ≡ 1, τ1(t) =
τ3(t) = t, m(t) ≡ 0, then Theorem 22 reduces
[18, Theorem 2], which is a third case of integral
inequality for continuous function. If we take T =
Z, a(t) ≡ C, b(t) ≡ 2, h(t) ≡ 0, p = 2, q = 1,
then Theorem 22 reduces to [19, Theorem 4(b1)],
which is one case of discrete inequality.

Based on Theorem 22, we will establish two
Volterra-Fredholm type delay integral inequality
on time scales in the following two theorems.

Theorem 27 Suppose u, f, g, h, m, p, q, r,
τi, i = 1, 2, 3 are the same as in Theorem 22,
C > 0 is a constant, T ∈ T0 is a fixed number.
If for t ∈ [t0, T ]

∩
T, u(t) satisfies the following

inequality

up(t) ≤ C+

∫ t

t0

[m(s)+f(s)up(τ1(s))+g(s)u
q(τ2(s))

+

∫ s

t0

h(ξ)ur(τ3(ξ))∆ξ]∆s

+

∫ T

t0

[m(s) + f(s)up(τ1(s)) + g(s)uq(τ2(s))

+

∫ s

t0

h(ξ)ur(τ3(ξ))∆ξ]∆s, (21)

with the initial condition (2), and furthermore

(1 + H̃21(T )eH̃3
(T, t0))ef (T, t0) < 2,

then for t ∈ [t0, T ]
∩

T,

u(t) ≤ {{[
C + H̃22(T )eH̃3

(T, t0)ef (T, t0)

2− (1 + H̃21(T )eH̃3
(T, t0))ef (T, t0)

]×

[1+H̃21(t)eH̃3
(t, t0)]+H̃22(t)eH̃3

(t, t0)}ef (t, t0)}
1
p ,

(22)
where

H̃1(t) = 1 +

∫ t

t0

ef (t, σ(s))f(s)∆s, (23)

H̃21(t) =

∫ t

t0

{g(s)q
p
K

q−p
p H̃1(s)

q
p

+

∫ s

t0

h(ξ)
r

p
K

r−p
p H̃1(ξ)

r
p∆ξ}∆s, ∀K > 0, (24)

H̃22(t) =

∫ t

t0

{m(s) + g(s)
p− q

p
K

q
p H̃1(s)

q
p

+

∫ s

t0

h(ξ)
p− r

p
K

r
p H̃1(ξ)

r
p∆ξ}∆s, ∀K > 0,

(25)

H̃3(t) = g(t)
q

p
K

q−p
p H̃1(t)

q
p

+

∫ t

t0

h(ξ)
r

p
K

r−p
p H̃1(ξ)

r
p∆ξ, ∀K > 0. (26)

Proof: Let the right side of (21) be v(t), then

u(t) ≤ v
1
p (t), t ∈ [t0, T ]

∩
T, (27)

and similar to the process of (8)-(10) we have

u(τi(t)) ≤ v
1
p (t), i = 1, 2 t ∈ [t0, T ]

∩
T. (28)

Considering

v(t0) = C+

∫ T

t0

[m(s)+f(s)up(τ1(s))+g(s)u
q(τ2(s))

+

∫ s

t0

h(ξ)ur(τ3(ξ))∆ξ]∆s,

it follows

v(t) = v(t0)+

∫ t

t0

[m(s)+f(s)up(τ1(s))+g(s)u
q(τ2(s))

+

∫ s

t0

h(ξ)ur(τ3(ξ))∆ξ]∆s

≤ v(t0) +

∫ t

t0

[m(s) + f(s)v(s) + g(s)u
q
p (s)

+

∫ s

t0

h(ξ)u
r
p (ξ)∆ξ]∆s, t ∈ [t0, T ]

∩
T. (29)

We notice the structure of (29) is just similar to
that of (11), so following in a same manner as
the process of (11)-(20) in Theorem 22 (that is,
v(t0) takes the place of a(t) in Theorem 22, and

let b(t) ≡ 1 in Theorem 22), considering H̃1(t) =

1+
∫ t
t0
ef (t, σ(s))f(s)∆s = ef (t, t0), we can obtain

v(t) ≤ [v(t0)(1+H̃21(t)eH̃3
(t, t0))+H̃22(t)eH̃3

(t, t0)]×

ef (t, t0), t ∈ [t0, T ]
∩

T, (30)

where H̃21(t), H̃22(t), H̃3(t) are defined in (24),
(25) and (26) respectively.
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Setting t = T in (30) we have

v(T ) ≤ [v(t0)(1 + H̃21(T )eH̃3
(T, t0))

+H̃22(T )eH̃3
(T, t0)]ef (T, t0). (31)

As 2v(t0)− C = v(T ), so it follows

2v(t0)−C = v(T ) ≤ [v(t0)(1 + H̃21(T )eH̃3
(T, t0))

+H̃22(T )eH̃3
(T, t0)]ef (T, t0),

that is,

v(t0) ≤
C + H̃22(T )eH̃3

(T, t0)ef (T, t0)

2− (1 + H̃21(T )eH̃3
(T, t0))ef (T, t0)

.

(32)
Combining (27), (30), (32) we can obtain the de-
sired inequality (21). �

Theorem 28 Suppose u, f, h, p, r, τi, i =
1, 2, 3 are the same as in Theorem 22, C > 0
is a constant, T ∈ T0 is a fixed number, L ∈
C(T0 × R+, R+), and 0 ≤ L(s, x) − L(s, y) ≤
M(s, y)(x − y) for x ≥ y ≥ 0, where M ∈
C(T0 ×R+, R+). If for t ∈ [t0, T ]

∩
T, u(t) satis-

fies the following inequality

up(t) ≤ C +

∫ t

t0

[f(s)up(τ1(s)) + L(s, u(τ2(s)))

+

∫ s

t0

h(ξ)ur(τ3(ξ))∆ξ]∆s

+

∫ T

t0

[f(s)up(τ1(s)) + L(s, u(τ2(s)))

+

∫ s

t0

h(ξ)ur(τ3(ξ))∆ξ]∆s, (33)

with the initial condition (2), and furthermore,
e
Ĥ2

(T, t0)ef (T, t0) < 2, then

u(t) ≤ {[
C + Ĥ1(T )eĤ2

(T, t0)ef (T, t0)

2− e
Ĥ2

(T, t0)ef (T, t0)
+ Ĥ1(t)]×

e
Ĥ2

(t, t0)ef (t, t0)}
1
p , t ∈ [t0, T ]

∩
T. (34)

where

Ĥ1(t) =

∫ t

t0

L(s,
p− 1

p
K

1
p (ef (s, t0))

1
p )∆s

+

∫ t

t0

∫ s

t0

h(ξ)
p− r

p
K

r
p (ef (ξ, t0))

r
p∆ξ∆s, ∀K > 0,

(35)

Ĥ2(t)=M(t,
p−1

p
K

1
p (ef (t, t0))

1
p )

1

p
K

1−p
p (ef (t, t0))

1
p

+

∫ t

t0

h(ξ)
r

p
K

r−p
p (ef (ξ, t0))

r
p∆ξ, ∀K > 0. (36)

Proof: Let the right side of (33) be v(t), then

u(t) ≤ v
1
p (t), t ∈ [t0, T ]

∩
T, (37)

and similar to the process of (8)-(10) we have

u(τi(t)) ≤ v
1
p (t), i = 1, 2 t ∈ [t0, T ]

∩
T. (38)

Furthermore, considering

v(t0) = C +

∫ T

t0

[f(s)up(τ1(s)) + L(s, u(τ2(s)))

+

∫ s

t0

h(ξ)ur(τ3(ξ))∆ξ]∆s,

we have

v(t)=v(t0)+

∫ t

t0

[f(s)up(τ1(s))+L(s, u(τ2(s)))

+

∫ s

t0

h(ξ)ur(τ3(ξ))∆ξ]∆s

≤v(t0)+
∫ t

t0

[f(s)v(s)+L(s, v
1
p (s))+

∫ s

t0

h(ξ)v
r
p (ξ)∆ξ]∆s.

(39)
Let

c(t) =

∫ t

t0

[L(s, v
1
p (s)) +

∫ s

t0

h(ξ)v
r
p (ξ)∆ξ]∆s,

(40)
then

v(t) ≤ v(t0)+c(t)+

∫ t

t0

f(s)v(s)∆s, t ∈ [t0, T ]
∩

T.

(41)
Considering c(t) is nondecreasing on T0, by Lem-
ma 20 we obtain

v(t) ≤ (v(t0) + c(t))ef (t, t0), t ∈ [t0, T ]
∩

T.
(42)

Combining (40) and (42) it follows

c(t) ≤
∫ t

t0

{L(s, ((v(t0) + c(s))ef (s, t0))
1
p )

+

∫ s

t0

h(ξ)[(v(t0) + c(ξ))ef (ξ, t0)]
r
p∆ξ}∆s,
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t ∈ [t0, T ]
∩

T. (43)

On the other hand, from Lemma 21 one can see
the following inequalities hold for ∀K > 0{

(v(t0) + c(t))
1
p ≤ 1

pK
1−p
p (v(t0) + c(t)) + p−1

p K
1
p ,

(v(t0) + c(t))
r
p ≤ r

pK
r−p
p (v(t0) + c(t)) + p−r

p K
r
p .

(44)
So Combining (43) and (44) we have

v(t0)+c(t) ≤ v(t0)+

∫ t

t0

L(s, (
1

p
K

1−p
p (v(t0)+c(s))

+
p− 1

p
K

1
p )(ef (s, t0))

1
p )∆s

+

∫ t

t0

∫ s

t0

h(ξ)[
r

p
K

r−p
p (v(t0) + c(ξ)) +

p− r

p
K

r
p ]×

(ef (ξ, t0))
r
p∆ξ∆s

= v(t0)+

∫ t

t0

{L(s, (1
p
K

1−p
p (v(t0)+c(s))+

p− 1

p
K

1
p )×

(ef (s, t0))
1
p )− L(s,

p− 1

p
K

1
p (ef (s, t0))

1
p )

+L(s,
p− 1

p
K

1
p (ef (s, t0))

1
p )}∆s

+

∫ t

t0

∫ s

t0

h(ξ)[
r

p
K

r−p
p (v(t0) + c(ξ)) +

p− r

p
K

r
p ]×

(ef (ξ, t0))
r
p∆ξ∆s

≤ v(t0) +

∫ t

t0

{M(s,
p− 1

p
K

1
p×

(ef (s, t0))
1
p )[

1

p
K

1−p
p (v(t0) + c(s))(ef (s, t0))

1
p ]

+L(s,
p− 1

p
K

1
p (ef (s, t0))

1
p )}∆s}∆s

+

∫ t

t0

[

∫ s

t0

h(ξ)
r

p
K

r−p
p (ef (ξ, t0))

r
p∆ξ](v(t0)+c(s))∆s

+

∫ t

t0

∫ s

t0

h(ξ)
p− r

p
K

r
p (ef (ξ, t0))

r
p∆ξ∆s

= v(t0)+Ĥ1(t)+

∫ t

t0

Ĥ2(s)(v(t0)+c(s))∆s, (45)

where Ĥ1(t), Ĥ2(t) are defined in (35) and (36)
respectively.

Considering Ĥ1(t) is nondecreasing on T0, then
by Lemma 20 we have

v(t0) + c(t) ≤ [v(t0) + Ĥ1(t)]eĤ2
(t, t0), (46)

Combining (42) and (46) we obtain

v(t) ≤ [v(t0) + Ĥ1(t)]eĤ2
(t, t0)ef (t, t0),

t ∈ [t0, T ]
∩

T. (47)

Take t = T in (47), considering 2v(t0)−C = v(T ),
then

2v(t0)−C =v(T ) ≤ [v(t0)+Ĥ1(T )]eĤ2
(T, t0)ef (T, t0),

(48)
which is followed by

v(t0) ≤
C + Ĥ1(T )eĤ2

(T, t0)ef (T, t0)

2− e
Ĥ2

(T, t0)ef (T, t0)
. (49)

Then combining (37), (47), and (49) we can ob-
tain the desired inequality (34). �

Remark 29 Compared with the main results in
[20, 21], the established results by Theorems 22-28
mainly deal with Gronwall-Bellman type inequal-
ities on time scales including integrals on finite
intervals, while in [20, Theorems 21, 22, 24, 26],
some Gronwall-Bellman type inequalities on time
scales including integrals on infinite intervals are
concerned, and in [21, Theorems 2.1-2.3], some
Gronwall-Bellman type inequalities on time scales
including four iterated integrals are concerned.

3 Applications

In this section, we will give some applications for
the presented results above, and try to give explic-
it bounds for solutions of certain delay dynamic
equations.

Example 1 Consider the delay dynamic differ-
ential equation

(up(t))∆=F (t, u(τ1(t)), u(τ2(t)),

∫ t

t0

W (ξ, u(τ3(ξ)))∆ξ),

t ∈ T0, (50)

with the initial condition{
u(t) = η(t), t ∈ [α, t0]

∩
T

|η(τi(t))| ≤ |C|
1
p , ∀t ∈ T0, τi(t) ≤ t0, i = 1, 2, 3,

(51)
where u ∈ Crd(T0, R), C is a constant with
C = up(t0), p > 0 is a constant, η ∈
Crd([α, t0]

∩
T, R). α, τi, i = 1, 2, 3 are the same

as in Theorem 22.
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Theorem 30 Suppose u(t) is a solution of (50)-
(51), and assume |F (t, x, y, z)| ≤ f(t)|x|p +
g(t)|y|q + |z|, |W (t, x)| ≤ h(t)|x|r, where
f, g, h, q, r are defined the same as in Theo-
rem 22, then the following inequality holds

u(t) ≤ {[|C|+H2(t)eH3(t, t0)]H1(t)}
1
p , t ∈ T0,

(52)
where

H1(t) = 1 +

∫ t

t0

ef (t, σ(s))f(s)∆s,

H2(t) =

∫ t

t0

{g(s)[q
p
K

q−p
p |C|+ p− q

p
K

q
p ]H1(s)

q
p

+

∫ s

t0

h(ξ)[
r

p
K

r−p
p |C|+ p− r

p
K

r
p ]H1(ξ)

r
p∆ξ}∆s,

∀K > 0

H3(t) = g(t)
q

p
K

q−p
p H1(t)

q
p +

∫ t

t0

h(ξ)
r

p
K

r−p
p

H1(ξ)
r
p∆ξ, ∀K > 0.

Proof: The equivalent integral equation of (40)
can be denoted by

up(t) = C +

∫ t

t0

F (s, u(τ1(s)), u(τ2(s)),

∫ s

t0

W (ξ, u(τ3(ξ)))∆ξ)∆s. (53)

Then we have

|up(t)| ≤ |C|+
∫ t

t0

|F (s, u(τ1(s)), u(τ2(s)),

∫ s

t0

W (ξ, u(τ3(ξ)))∆ξ)|∆s

≤ |C|+
∫ t

t0

[f(s)|u(τ1(s))|p + g(s)|u(τ2(s))|q

+|
∫ s

t0

W (ξ, u(τ3(ξ)))∆ξ|]∆s

≤ |C|+
∫ t

t0

[f(s)|u(τ1(s))|p + g(s)|u(τ2(s))|q

+

∫ s

t0

h(ξ)|u(τ3(ξ))|r∆ξ]∆s. (54)

A suitable application of Theorem 22 (that is, |C|
takes the place of a(t) in Theorem 22, and b(t) ≡ 1
in Theorem 22) yields (52). �

Remark 31 Under the conditions of The-
orem 30, Considering H1(t) = 1 +∫ t
t0
ef (t, σ(s))f(s)∆s = ef (t, t0), furthermore

we have the following estimate

|u(t)| ≤ {[|C|+H2(t)eH3(t, t0)]ef (t, t0)}
1
p , t ∈ T0.

(55)

Example 2 Consider the delay dynamic integral
equation

up(t) = C +

∫ t

t0

F̂ (s, u(τ1(s)), u(τ2(s)),

∫ s

t0

Ŵ (ξ, u(τ3(ξ)))∆ξ)∆s

+

∫ T

t0

F̂ (s, u(τ1(s)), u(τ2(s)),∫ s

t0

Ŵ (ξ, u(τ3(ξ)))∆ξ)∆s, t ∈ T0, (56)

with the initial condition (51), where u ∈
Crd(T0, R), C is a constant with C = up(t0),
p > 0 is a constant, η ∈ Crd([α, t0]

∩
T, R).

α, τi, i = 1, 2, 3 are the same as in Theorem 22.

Theorem 32 Suppose u(t) is a solution of (56),

and assume |F̂ (t, x, y, z)| ≤ f(t)|x|p + L(t, |y|q) +
|z|, |Ŵ (t, x)| ≤ h(t)|x|r, where f, h, r, L are
defined the same as in Theorem 28, then the fol-
lowing inequality holds

u(t) ≤ [
|C|+ Ĥ1(T )eĤ2

(T, t0)ef (T, t0)

2− e
Ĥ2

(T, t0)ef (T, t0)
+ Ĥ1(t)]×

e
Ĥ2

(t, t0)ef (t, t0), t ∈ [t0, T ]
∩

T, (57)

provided that e
Ĥ2

(T, t0)ef (T, t0) < 2, where

Ĥ1(t), Ĥ2(t) are the same as in Theorem 28.

Proof: From (56) we have

|up(t)| ≤ |C|+
∫ t

t0

|F̂ (s, u(τ1(s)), u(τ2(s)),

∫ s

t0

Ŵ (ξ, u(τ3(ξ)))∆ξ)|∆s

+

∫ T

t0

|F̂ (s, u(τ1(s)), u(τ2(s)),
∫ s

t0

Ŵ (ξ, u(τ3(ξ)))∆ξ)|∆s

≤ |C|+
∫ t

t0

[f(s)|u(τ1(s))|p + L(s, |u(τ2(s))|q)
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+|
∫ s

t0

Ŵ (ξ, u(τ3(ξ)))∆ξ|]∆s

+

∫ T

t0

[f(s)|u(τ1(s))|p + L(s, |u(τ2(s))|q)

+|
∫ s

t0

Ŵ (ξ, u(τ3(ξ)))∆ξ|]∆s

≤ |C|+
∫ t

t0

[f(s)|u(τ1(s))|p + L(s, |u(τ2(s))|q)

+

∫ s

t0

h(ξ)|u(τ3(ξ))|r]∆s

+

∫ T

t0

[f(s)|u(τ1(s))|p + L(s, |u(τ2(s))|q)

+

∫ s

t0

h(ξ)|u(τ3(ξ))|r]∆s. (58)

Then under the condition e
Ĥ2

(T, t0)ef (T, t0) < 2,

a suitable application of Theorem 28 yields (57).
�

4 Conclusions

We have established several new delay integral in-
equalities on time scales, which can be used to
provide explicit bounds for solutions of certain
delay dynamic equations. As one can see from
Remark 1-4, Theorem 22 generalize many known
results in the literature, and unify some integral
inequalities on continuous functions and their cor-
responding discrete versions to some degree. The
process of Theorem 22-28 can be applied to es-
tablish delay inequalities with two independent
variables on time scales, which are supposed to
further research.
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cations, Birkhäuser, Boston, 2001.

[14] F. C. Jiang, F. W. Meng, Explicit bound-
s on some new nonlinear integral inequali-
ty with delay, J. Comput. Appl. Math., 205
(2007),pp.479-486.

[15] W. N. Li, Some delay integral inequalities
on time scales, Computers and Mathematics
with Applications, 59 (2010), pp.1929-1936.

[16] W. N. Li, M. A. Han, F. W. Meng, Some new
delay integral inequalities and their applica-
tions, Journal of Computational and Applied
Mathematics, 180 (2005), pp. 191-200.

[17] W. N. Li, Q. Zhang, F. Qiu, Some nonlin-
ear delay discrete inequalities and their ap-
plications, Demonstratio Math., 39 (2006),
pp.771-782.

[18] Z. L. Yuan, X. W. Yuan, F. W. Meng, Some
new delay integral inequalities and their ap-
plications, Applied Mathematics and Compu-
tation, 208(2009), pp.231-237.

[19] B. G. Pachpatte, A note on certain integral
inequalities with delay, Period. Math. Hun-
gar., 31 (1995), pp.234-299.

WSEAS TRANSACTIONS on MATHEMATICS Qinghua Feng, Fanwei Meng

E-ISSN: 2224-2880 392 Issue 5, Volume 11, May 2012



[20] Q. H. Feng, F. W. Meng, Gronwall-Bellman
Type Inequalities On Time Scales And
Their Applications, WSEAS Transactions on
Mathematics, 10(2011), (7): pp.239-247.

[21] B. Zheng, New Generalized Delay Integral
Inequalities On Time Scales, WSEAS Trans-
actions on Mathematics, 10 (2011),(1): pp.1-
10.

WSEAS TRANSACTIONS on MATHEMATICS Qinghua Feng, Fanwei Meng

E-ISSN: 2224-2880 393 Issue 5, Volume 11, May 2012




